Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwnt1

نویسندگان

  • Jos Joore
  • Claudia Fasciana
  • Johanna E. Speksnijder
  • Wiebe Kruijer
  • Olivier H.J. Destrée
  • Adriana J.M. van den Eijnden-van Raaij
  • Siegfried W. de Laat
  • Danica Zivkovic
چکیده

Goosecoid is a homeobox gene that is expressed as an immediate early response to mesoderm induction by activin. We have investigated the induction of the zebrafish goosecoid promoter by the mesoderm inducing factors activin and basic fibroblast growth factor (bFGF) in dissociated zebrafish blastula cells, as well as by different wnts in intact embryos. Activin induces promoter activity, while bFGF shows a cooperative effect with activin. We have identified two enhancer elements that are functional in the induction of the goosecoid promoter. A distal element confers activin responsiveness to a heterologous promoter in the absence of de novo protein synthesis, whereas a proximal element responds only to a combination of activin and bFGF. Deletion experiments show that both elements are important for full induction by activin. Nuclear proteins that bind to these elements are expressed in blastula embryos, and competition experiments show that an octamer site in the activin responsive distal element is specifically bound, suggesting a role for an octamer binding factor in the regulation of goosecoid expression by activin. Experiments in intact embryos reveal that the proximal element contains sequences that respond to Xwnt1, but not to Xwnt5c. Furthermore, we show that the distal element is active in a confined dorsal domain in embryos and responds to overexpression of activin in vivo, as well as to dorsalization by lithium. The distal element is to our knowledge the first enhancer element identified that mediates the induction of a mesodermal gene by activin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development

The high mobility group (HMG) proteins constitute a superfamily of nuclear proteins that regulate the expression of a wide range of genes through architectural remodeling of the chromatin structure, and the formation of multiple protein complexes on promoter/enhancer regions, but their function in germ layer specification during early development is not clear. Here we show that hmgb genes regul...

متن کامل

Protein kinase A is involved in the induction of early mesodermal marker genes by activin

In this study we have investigated the role of cAMP-dependent protein kinase A (PKA) in the induction of the early mesodermal marker genes goosecoid and no tail by activin in zebrafish embryos. We show that upon treatment with activin, zebrafish blastula cells exhibit a rapid and transient increase in PKA activity. In these cells, activin rapidly induces the expression of the immediate early re...

متن کامل

Axis formation in zebrafish.

Recent advances in our understanding of axis formation and patterning in zebrafish relate the developmental mode of this aspiring genetic model organism to higher vertebrates. The effect of UV irradiation and lithium treatment, as well as detailed early lineage analyses, have shed some light on dorsoventral axis formation. However, the molecular mechanism of axis formation, as well as the ident...

متن کامل

FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction.

Normal pattern formation during embryonic development requires the regulation of cellular competence to respond to inductive signals. In the Xenopus blastula, vegetal cells release mesoderm-inducing factors but themselves become endoderm, suggesting that vegetal cells may be prevented from expressing mesodermal genes in response to the signals that they secrete. We show here that addition of lo...

متن کامل

Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of β-catenin

Formation of the vertebrate axis may involve a Wnt signaling cascade similar to the Drosophila wingless pathway. Zebrafish wnt8 is a candidate for involvement in axis specification insofar as it is expressed maternally and when overexpressed it can induce goosecoid, a transcription factor normally expressed in the embryonic shield. In this study we demonstrate that beta-catenin, a cadherin asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 55  شماره 

صفحات  -

تاریخ انتشار 1996